Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Blood-Based Machine Learning Assay Noninvasively Detects Ovarian Cancer

By LabMedica International staff writers
Posted on 11 Apr 2024

Ovarian cancer is one of the most common causes of cancer deaths among women and has a five-year survival rate of around 50%. The disease is particularly lethal because it often doesn't cause symptoms in its early stages. The absence of effective screening tools and the disease's asymptomatic nature contribute to its diagnoses during the later stages when treatment options are less effective. A cost-effective, accessible detection method could revolutionize the clinical approach to ovarian cancer screening and potentially save lives. Although liquid biopsy technologies, which analyze blood for tumor-derived DNA, have been explored for noninvasive cancer detection, their utility in ovarian cancer has been limited. Now, a retrospective study presented at AACR 2024 has demonstrated that a blood-based machine learning assay, which combines cell-free DNA (cfDNA) fragment patterns with levels of the proteins CA125 and HE4, can effectively distinguish patients with ovarian cancer from healthy controls or patients with benign ovarian masses.

The DELFI (DNA Evaluation of Fragments for early Interception) method employs a novel liquid biopsy approach called fragmentomics. This technique improves the accuracy of tests by detecting circulation changes in the size and distribution of cfDNA fragments across the genome. Researchers at the Johns Hopkins Kimmel Cancer Center (Baltimore, MD, USA) applied DELFI to analyze the fragmentomes of individuals with and without ovarian cancer. The study included plasma samples from 134 women with ovarian cancer, 204 women without cancer, and 203 women with benign adnexal masses. They trained a machine learning algorithm to integrate this fragmentome data with plasma levels of CA125 and HE4, two established biomarkers for ovarian cancer.

The researchers developed two models: one for screening ovarian cancer in an asymptomatic population and another for noninvasively differentiating benign from cancerous masses. At a specificity of over 99% (virtually eliminating false positives), the screening model detected 69%, 76%, 85%, and 100% of ovarian cancer cases from stages I to IV, respectively; the area under the curve (a measure of test accuracy) was 0.97 across all stages, significantly outperforming current biomarkers. For comparison, using CA125 levels alone identified 40%, 66%, 62%, and 100% of cases staged I-IV, respectively. The diagnostic model distinguished ovarian cancer from benign masses with an area under the curve of 0.87. The researchers plan to validate their models in larger cohorts to confirm these findings, but the initial results are promising.

“This study contributes to a large body of work from our group demonstrating the power of genome-wide cell-free DNA fragmentation and machine learning to detect cancers with high performance,” said Victor Velculescu, MD, PhD, FAACR, senior author of the study. “Our findings indicate that this combined approach resulted in improved performance for screening compared to existing biomarkers.”

Related Links:
Johns Hopkins Medicine

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
hCG Whole Blood Pregnancy Test
VEDALAB hCG-CHECK-1
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: A new study has identified patterns that predict ovarian cancer relapse (Photo courtesy of Cedars-Sinai)

Spatial Tissue Analysis Identifies Patterns Associated With Ovarian Cancer Relapse

High-grade serous ovarian carcinoma is the most lethal type of ovarian cancer, and it poses significant detection challenges. Typically, patients initially respond to surgery and chemotherapy, but the... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.