We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Siemens Healthineers - Laboratory Diagnostics

Provides advanced laboratory diagnostics solutions for the medical industry read more Featured Products: More products

Download Mobile App





AI Predicts Multiple Sclerosis Risk, Flags Potentially Contaminated Lab Results

By LabMedica International staff writers
Posted on 27 Jul 2023
Print article
Image: Breaking results from two studies on AI in the lab were presented at AACC 2023 (Photo courtesy of Freepik)
Image: Breaking results from two studies on AI in the lab were presented at AACC 2023 (Photo courtesy of Freepik)

New research presented at the 2023 AACC Annual Scientific Meeting & Clinical Lab Expo has shown that an artificial intelligence (AI) model can predict the likelihood of individuals developing multiple sclerosis (MS) years before its diagnosis. Such prediction could allow for earlier treatment initiation, potentially slowing the progression of this neurological disorder. Breaking results from another study have revealed that machine learning (ML) can be instrumental in identifying laboratory samples contaminated with intravenous fluids. This important discovery could help minimize laboratory errors that tend to slow down diagnosis, increase healthcare expenses, and lead to incorrect treatments. Both these studies indicate the huge strides made in the use of AI and ML to enhance patient care.

MS, a disease of the nervous system, affects over 2.8 million people globally. While its exact cause remains unclear, the disease is linked to autoimmunity, where the immune system mistakenly attacks healthy cells, as well as to genetics, the Epstein-Barr virus, and other factors. Currently, MS diagnosis relies on imaging, cerebrospinal fluid studies, and clinical history. However, there is a need for early-detection methods as they could help start treatment earlier, thus slowing down disease progression.

In the first study, a team of researchers at Siemens Healthineers (Erlangen, Germany) trained machine-learning models to predict the risk of MS. Over 3,000 data sets from the electronic health records of MS patients and others were used for the study. Their "random forest model" parses data on a patient’s age, gender, blood, and metabolic markers, obtained up to three years prior to diagnosis. The model demonstrated high accuracy and strong predictive ability. The key factors contributing to the model's ability to identify high-risk patients were blood measurements of neutrophils, red blood cells, and other markers. These predictions remained consistent up to three years before diagnosis.

“Our model’s performance suggests that AI-based prediction models could identify the risk for multiple sclerosis years before neurological symptoms appear,” said Raj Gopalan, MD, at Siemens Healthineers who led the research team. “This could reveal which patients should be monitored for periodic neurological and cognitive exams when symptoms appear. In addition, early confirmation of the diagnosis with imaging and cerebrospinal fluid studies could facilitate disease-modifying treatment.”

In a separate study, a research team led by scientists at Washington University School of Medicine in St. Louis (St. Louis, MO, USA) used a "mixture-of-experts" modeling technique to develop an ML-based system capable of detecting instances of IV fluid contamination that were missed by manual methods. Currently, scientists are utilizing ML to identify potential contaminations in lab samples that could affect test results. When samples are collected directly from IV catheters instead of a fresh blood draw, the fluid within can lead to false lab results that delay diagnosis, increase healthcare costs, and result in incorrect treatments. Existing contamination detection methods are not always reliable and often require technicians to undertake extensive manual analysis.

The research team gathered over 9.6 million chemistry results from patients and simulated IV fluid contamination in some samples with common IV solutions. By training different machine-learning models using the simulated results, they generated a final set of predictions. The models detected significant contamination in several thousand samples. The newly-developed pipeline is capable of detecting 5 to 10 times more contaminated samples compared to the existing methods. A vast majority of these tests evaded being previously flagged using manual methods –up to 94% in the case of samples contaminated with lactated Ringer's solution.

“While this won’t immediately reduce the number of contaminated tests, it will hopefully substantially reduce the operational and clinical impact of these events when they do happen, and provide us with a better quality metric with which we can prioritize areas for improvement initiatives,” said Nicholas Spies, MD, at Washington University School of Medicine in St. Louis, who led the research team.

Related Links:
Siemens Healthineers 
Washington University School of Medicine in St. Louis 

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Automatic Western Blot Analyzer
Tenfly Phoenix Blot Analyzer

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Signs of multiple sclerosis show up in blood years before symptoms appear (Photo courtesy of vitstudio/Shutterstock)

Unique Autoantibody Signature to Help Diagnose Multiple Sclerosis Years before Symptom Onset

Autoimmune diseases such as multiple sclerosis (MS) are thought to occur partly due to unusual immune responses to common infections. Early MS symptoms, including dizziness, spasms, and fatigue, often... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: A new study has identified patterns that predict ovarian cancer relapse (Photo courtesy of Cedars-Sinai)

Spatial Tissue Analysis Identifies Patterns Associated With Ovarian Cancer Relapse

High-grade serous ovarian carcinoma is the most lethal type of ovarian cancer, and it poses significant detection challenges. Typically, patients initially respond to surgery and chemotherapy, but the... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.