Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Diagnostic Test Identifies Resistance Mutation that Enables Use of Inexpensive, Single Dose Gonorrhea Drug

By LabMedica International staff writers
Posted on 17 Aug 2020
By detecting the mutated gene responsible for resistance to the drug ciprofloxacin, it is possible to identify gonorrhea patients who can be cured by a single oral dose of this drug.

Gonorrhea, a sexually transmitted infection (STI) caused by Neisseria gonorrhoeae, remains a major public health issue worldwide with the World Health Organization (WHO) estimating that 87 million new cases of gonorrhea occur annually. Untreated gonorrhea contributes to serious reproductive and sexual health problems, including pelvic inflammatory disease, infertility, and an increased risk of transmission of human immunodeficiency virus (HIV).

Use of the inexpensive oral antibiotic ciprofloxacin to treat gonorrhea has largely been discontinued over concerns that the bacterium was becoming resistant to it. On the other hand, a molecular assay that predicts in vitro ciprofloxacin susceptibility is now available but has not been systematically studied in human infections.

Investigators at the University of California, Los Angeles (USA) used this genotypic polymerase chain reaction assay to determine the status of the N. gonorrhoeae gyrase subunit A serine 91 codon. They then conducted a multisite prospective clinical study of the efficacy of a single oral dose of ciprofloxacin 500 mg in patients with culture-positive gonorrhea. Follow-up specimens for culture were collected to determine microbiological cure five to 10 days post-treatment.

Results showed that of the 106 subjects possessing culture-positive infections with wild-type gyrA serine N. gonorrhoeae genotype, the efficacy of single-dose oral ciprofloxacin treatment was 100%. Thus, oral ciprofloxacin was highly effective against infections caused by the bacterium lacking the gyrA serine mutation.

"The new test gives doctors more choices to treat the sexually transmitted infection and could help slow down the spread of drug-resistant gonorrhea," said first author Dr. Jeffrey Klausner, professor of medicine at the University of California, Los Angeles. "Gonorrhea is one of the most common drug-resistant infections worldwide and is becoming harder to treat. Current treatment methods require an antibiotic injection, which is expensive and painful. This new test could make it easier and safer to treat gonorrhea with different antibiotics, including one pill given by mouth. Using a pill instead of a shot would also make it easier and faster to treat sex partners of patients with gonorrhea."

The paper was published in the August 7, 2020, online edition of the journal Clinical Infectious Diseases.

Related Links:

University of California, Los Angeles


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Real-Time PCR System
Gentier 96T
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Signs of multiple sclerosis show up in blood years before symptoms appear (Photo courtesy of vitstudio/Shutterstock)

Unique Autoantibody Signature to Help Diagnose Multiple Sclerosis Years before Symptom Onset

Autoimmune diseases such as multiple sclerosis (MS) are thought to occur partly due to unusual immune responses to common infections. Early MS symptoms, including dizziness, spasms, and fatigue, often... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: A new study has identified patterns that predict ovarian cancer relapse (Photo courtesy of Cedars-Sinai)

Spatial Tissue Analysis Identifies Patterns Associated With Ovarian Cancer Relapse

High-grade serous ovarian carcinoma is the most lethal type of ovarian cancer, and it poses significant detection challenges. Typically, patients initially respond to surgery and chemotherapy, but the... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.